ENHANCEMENT OF SPEECH INTELLIGIBILITY USING SPEECH TRANSIENTS EXTRACTED BY A WAVELET PACKET-BASED REAL-TIME ALGORITHM by
نویسندگان
چکیده
Studies have shown that transient speech, which is associated with consonants, transitions between consonants and vowels, and transitions within some vowels, is an important cue for identifying and discriminating speech sounds. However, compared to the relatively steady-state vowel segments of speech, transient speech has much lower energy and thus is easily masked by background noise. Emphasis of transient speech can improve the intelligibility of speech in background noise, but methods to demonstrate this improvement have either identified transient speech manually or proposed algorithms that cannot be implemented to run in real-time. We have developed an algorithm to automatically extract transient speech in real-time. The algorithm involves the use of a function, which we term the transitivity function, to characterize the rate of change of wavelet coefficients of a wavelet packet transform representation of a speech signal. The transitivity function is large and positive when a signal is changing rapidly and small when a signal is in steady state. Two different definitions of the transitivity function, one based on the short-time energy and the other on Mel-frequency cepstral coefficients, were evaluated experimentally, and the MFCC-based transitivity function produced better results. The extracted transient speech signal is used to create modified speech by combining it with original speech. To facilitate comparison of our transient and modified speech to speech processed using methods proposed by other researcher to emphasize transients, we developed three indices. The iv indices are used to characterize the extent to which a speech modification/processing method emphasizes (1) a particular region of speech, (2) consonants relative to vowels, and (3) onsets and offsets of formants compared to steady formant. These indices are very useful because they quantify differences in speech signals that are difficult to show using spectrograms, spectra and time-domain waveforms. The transient extraction algorithm includes parameters which when varied influence the intelligibility of the extracted transient speech. The best values for these parameters were selected using psycho-acoustic testing. Measurements of speech intelligibility in background noise using psycho-acoustic testing showed that modified speech was more intelligible than original speech, especially at high noise levels (-20 and-15 dB). The incorporation of a method that automatically identifies and boosts unvoiced speech into the algorithm was evaluated, showing that this process does not result in additional speech intelligibility improvements. Figure 3: Short-time autocorrelation functions of voiced speech parts (a) and (b) and of unvoiced speech (c). The autocorrelation functions were computed using …
منابع مشابه
A New Algorithm for Voice Activity Detection Based on Wavelet Packets (RESEARCH NOTE)
Speech constitutes much of the communicated information; most other perceived audio signals do not carry nearly as much information. Indeed, much of the non-speech signals maybe classified as ‘noise’ in human communication. The process of separating conversational speech and noise is termed voice activity detection (VAD). This paper describes a new approach to VAD which is based on the Wavelet ...
متن کاملA Generalized Time–Frequency Subtraction Method for Robust Speech Enhancement Based on Wavelet Filter Banks Modeling of Human Auditory System
We present a new speech enhancement scheme for a single-microphone system to meet the demand for quality noise reduction algorithms capable of operating at a very low signal-tonoise ratio. A psychoacoustic model is incorporated into the generalized perceptual wavelet denoising method to reduce the residual noise and improve the intelligibility of speech. The proposed method is a generalized tim...
متن کاملSpeech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملSpeech Enhancement in Wavelet Domain using Principle Component Analysis and Enhancement Filters
The aim of speech enhancement is to improve the perceptual quality and intelligibility of the speech by reducing the background noise. This paper proposes a technique in wavelet domain to enhance the signal. The signal is decomposed into approximation coefficients and detail coefficients which are filtered separately using spectral subtraction and wiener filter. The signal is reconstructed by t...
متن کاملA New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009